
https://repost.aws/knowledge-center/bedrock-prompts-deterministic-responses

How do I optimize prompts to achieve
deterministic responses on Amazon
Bedrock?
I want to use effective prompts and features to get more consistent and reliable results in
Amazon Bedrock.

Resolution
If your Amazon Bedrock prompts don't function correctly, or you want better
deterministic responses, then use the following solutions.

Select the right foundation model
Amazon Bedrock provides access to multiple pretrained foundation models (FMs), such
as Amazon Titan, Anthropic Claude, and Mistral.
To find the right FM for your use case, take the following actions:

 Adjust model inference parameters, such as temperature and top-p, to reduce
randomness in the generated text.

 Test different models. To perform a basic test, use the Compare mode feature on the
Amazon Bedrock console's Chat playground.

 Use different models, and then compare the consistency of responses across multiple
runs of the same prompt.

 Choose the model that has the most deterministic behavior for your use case.

Use model evaluation jobs
To perform an advanced test, use model evaluation jobs. To identify potential issues or
biases in the prompt or training data, use an automatic model evaluation. To check the
output consistency on the input data, use a model evaluation job that uses human
workers.
Create clear and specific prompts
To create clear and specific prompts that generate the appropriate response, take the
following actions:

 Write the prompt in different ways. For example, change the structure, keywords, or
format to get more consistent responses from the model.

 Use prompts that limit the model's ability to generate open-ended or divergent outputs.

 Adjust the FM's inference parameters to check for variations in the outputs for each
prompt.

Example of an effective prompt:

 ``` You are a professional proofreader. Please review the following text for any 
grammatical errors, spelling mistakes, or inconsistencies, and provide corrections:    
   
[Insert text to be proofread] ``` 
The preceding prompt clearly defines the model's role and provides specific instructions. 
It also limits the scope of the response, which increases the chances of deterministic and 
relevant outputs. 

Customize your FM 
If the pretrained FMs don't work for your specific requirements, then you can use 
continued pretraining and fine tuning to customize the FMs. 

To fine tune a model, complete the following steps: 

1. Prepare a dataset that represents the kinds of inputs that you want to use with the FM. 
2. Fine tune or use continued pretraining to train the FM on your dataset. Adjust 

the custom model hyperparameters as needed. 
3. Evaluate the fine-tuned FM's performance, and then repeat the steps until you get the 

appropriate results. For more information, see Guidelines for model customization. 

Combine and refine FM outputs 
Ensemble techniques 
To get more accurate and reliable results, set up a workflow that combines outputs from 
multiple models to improve the final prediction's reliability and robustness. You can also 
add custom logic to analyze and refine the outputs. 

To modify or remove non-deterministic elements from the outputs, use post-processing 
tasks. 

Prompt chaining 
Use chained prompts to build more sophisticated and capable generative AI 
applications.  

Break down your complex task into smaller, more manageable subtasks that have their 
own prompt. Then, combine the subtasks to form the complete complex task that you 
want the FM to accomplish. Use Amazon Bedrock with AWS Step Functions to arrange 
the prompts in a predefined order or by a defined set of rules. 



To get started, see the amazon-bedrock-serverless-prompt-chaining repository on the 
GitHub website. For information about how to construct effective AI applications, 
see Build and orchestrate generative AI applications with Amazon Bedrock and Step 
Functions. 
Set up guardrails 
To control the responses from the FMs, set up guardrails for Amazon Bedrock. You can 
consistently apply the guardrails across multiple FMs. Use guardrails to block certain 
topics, filter out harmful or unpredictable content, remove undesirable words, and hide 
sensitive information. For more information, see Guardrails for Amazon Bedrock. 
You can also customize blocked messages and use the built-in test window to test your 
guardrail configurations. To get controlled and predictable outputs, connect guardrails 
directly with the FMs when you generate responses. 
  



How do I resolve the error "Failed to 
receive X resource signal(s) within the 
specified duration" for EC2 Windows 
instances in AWS CloudFormation? 
I receive the error message: "Failed to receive X resource signal(s) within the specified 
duration" for Windows Amazon Elastic Compute Cloud (Amazon EC2) instances in AWS 
CloudFormation. 

Short description 
You get this error when CloudFormation doesn't receive success signals for resources 
that have a CreationPolicy attribute specified with a ResourceSignal in it. The error 
might occur for an Amazon EC2 instance, Auto Scaling group, or a wait condition. 
 
Note: The following resolution applies only to CloudFormation stacks that you create 
with Windows instances. For Linux instances, see How do I resolve the error "Failed to 
receive X resource signal(s) within the specified duration" in AWS CloudFormation? 
 
Resolution 
Based on your use case, use the following troubleshooting steps to resolve your issue. 

Note: To prevent a stack rollback, choose Preserve successfully provisioned 
resources for Stack failure options in the CloudFormation console. When you choose 
this option, the failed instance isn't terminated until you delete the stack. 
 
The cfn-bootstrap MSI package isn't installed on one or more instances of the AWS 
CloudFormation stack 
To confirm that the cfn-signal script is installed on the instance that's configured to send 
signals to the stack, complete the following steps: 

1. Use RDP to connect to your Windows instance. 
2. Confirm that the cfn helper scripts package is installed. Run the following command in 

Windows PowerShell: 

Get-Package -name aws-cfn-bootstrap 



Important: By default, CloudFormation helper scripts are installed on Amazon Windows 
Amazon Machine Images (AMIs). To install the helper scripts, see CloudFormation helper 
scripts reference. 

The AWS CloudFormation template has syntax errors or incorrect values 
To find the errors and incorrect values, complete the following steps: 

1. In a code editor, open the CloudFormation template for your stack. Then, find 
the UserData property section. 

2. Check for errors with syntax, missing spaces, misspellings, and other typos. 
3. Confirm that the values for the stack, resource, and AWS Region properties are correct. 

Note: Check for syntax errors or incorrect values in the bootstrap script that's included in 
the UserData property. The script calls the cfn-signal. 

If you signal within the cfn-init commands, then look for information about the signal in 
the cfn-init logs. To search for errors in the cloud-init or cfn-init logs, use RDP to 
connect to your instance. Then, use the keyword "error" or "failure" to search for 
detailed error or failure messages in the following logs: 
 
C:\cfn\log\cfn-init.log   
C:\cfn\log\cfn-init-cmd.log   
C:\cfn\log\cfn-wire.log 

 
The timeout property for the CreationPolicy attribute is very low 
The timeout property's value is defined by the CreationPolicy attribute. Confirm that 
the value is high enough to run tasks before the cfn-signal script sends signals to 
CloudFormation resources. 
 
To check the timeout property value and compare the signaling and resource failure 
timestamps, complete the following steps: 

1. In a code editor, open the CloudFormation template for your stack to find 
the timeout property value. 
Note: The timeout property value is the maximum amount of time that 
CloudFormation waits for a signal before it returns an error. 

2. To get an estimate of when the cfn-signal script is activated, use RDP to connect 
to the instance. Then, run the following command: 

C:\cfn\log\cfn-init.log 
Compare the start and end timestamps that are logged in the file to get an 
estimate of the time it took to bootstrap. Modify the timeout value as needed. 
The maximum time that you can specify is 12 hours. 



The log file shows a timestamp when the SUCCESS signal is sent to 
CloudFormation resources. 
Example: 
2019-01-11 12:46:40,101 [DEBUG] Signaling resource EC2Instance in stack XXXX 
with unique ID i-045a536a3dfc8ccad and status SUCCESS 

3. Open the CloudFormation console. 
4. Choose the Events view. 
5. Choose Status reason. Expand the row for the event with the status reason 

"Failed to receive X resource signal(s) within the specified duration." 
6. Compare the signaling timestamp with the resource failure timestamp. 

Note: For a successful completion, the script must send the signal before the 
instance is created or fails to create. 
 

The cfn-signal isn't sent from the Amazon EC2 instance 
Verify that the signal that CloudFormation received came from the instance. Check the 
cfn wire log that's available at C:\cfn\log\cfn-wire.log. If the response isn't 200, then 
there might be a connectivity issue between your instance and the CloudFormation's 
endpoint. 
 
If you configure a reboot in your instance and the cfn-signal is set in 
the UserData section, then the signal might not be sent. This is because UserData runs 
only once. For more information, see How do I stop my Amazon EC2 Windows instance 
from signaling back as CREATE_COMPLETE before the instance finishes bootstrapping? 
 
When you send signals from somewhere that's not your instance, use 
the SignalResource API. For example, you can use an AWS Lambda function to call the 
SignalResource API, and then send the signal to the stack. If you get an error, then use 
CloudWatch Logs to check your Lambda logs to understand why the signal wasn't sent 
to the stack. 
  



How do I use the unified CloudWatch 
agent to troubleshoot log timestamp 
issues? 
I want to use the unified Amazon CloudWatch agent to troubleshoot log timestamp issues. 

Short description 
The unified CloudWatch agent uses the PutlogEvents API to upload a batch of log 
events to Amazon CloudWatch Logs. Log events in a batch can't be more than 2 hours 
in the future and can't be more than 14 days old. Also, log events can't be from earlier 
than the retention period of the log group. 
 
If you have log timestamp issues, then you might receive an error message that's similar 
to one of the following: 

 "<timestamp> E! [outputs.cloudwatchlogs] The log entry in (<Log Group Name>/(<Log 
Stream Name>) with timestamp (<actual log timestamp>) comparing to the current time 
(<current timestamp> m=+100) is out of accepted time range. Discard the log entry." 

 "<timestamp> W! [outputs.cloudwatchlogs] 1 log events for log '<Log Group 
Name>/(<Log Stream Name>' are expired." 

Resolution 
To troubleshoot these errors, complete the following steps: 

1. Make sure that you use timestamp_format in the unified CloudWatch 
agent configuration file that specifies the timestamp format. 

2. (Optional) If necessary, remove the timestamp_format from the unified CloudWatch 
agent configuration file. 

3. Restart the unified CloudWatch agent, and then confirm that the current time is used. 

Related information 
Why isn't the unified CloudWatch agent pushing log events? 
 

 

 


